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The priming effect in visual 
processing



Behaviour and brain response
Priming

• In an experiment, participants viewed two 
pairs of rapidly presented parafoveal images, 
followed by a single foveal image.

• The foveal image was either 1-back primed 
(same image seen in previous pair), 2-back 
primed (seen in previous-but-one pair), or 
unprimed (previously unseen).

• The priming effect is any measured change 
in behaviour or brain signal when a stimulus 
is primed.

• E.g. faster, more accurate behaviour.

+

+

2-back 
-700ms

1-back 
-350 ms

Probe 
0ms

• 28 participants included (7 more excluded due to ≥50% missing trials). 

• Whole-scalp MEG data recorded. 

• 7500 images = 5 categories × 100 objects × 15 examples. 

• 1440 trials per participant: categories and priming conditions counterbalanced.



Repetition suppression

Priming in the brain

• One observable effect of priming is 
repetition suppression.

• Can manifest as reduced activity 
when a stimulus is familiar, compared 
to novel.

• Can manifest as a delay in activation 
level.

• We observed a 1-back priming “sweet 
spot”.

Not primed

Primed (1-back)

Primed (2-back)

Foveal image 
presentation

Reduced activity when 
recently primed (1-back)

If prime was 2-back, 
probe activation returns 

to unprimed levels.



Representational sharpening

Priming in the brain

• A sharpening effect is where activity is not 
just lower, but more “efficient”. 

• Previous activations leave some residual 
trace. 

• This can manifest as higher decoding 
accuracy despite lower activation. 

• This can manifest as representations 
resolving faster. 

• We want to explore both of these effects 
using a deep model of image recognition.
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Representational similarity 
analysis (RSA)



Apron

Blossom

Chips

Flower

Lilly

Recycling truck

Rooster

Salad

Snow mobile

Soufflé

Tie

Tiger

Tram

Turban

Whale



“Colour”



“Category”

Animals

Vehicles

Clothing

Plants

Food



RDMs
RSA

• These arrangements are captured in a 
representational dissimilarity matrix 
(RDM), which records how similar or 
different each pair of stimuli is.

• This category structure is very simple.

• The RDM captures how the model 
“sees” the stimulus space.

• RDMs can also come from brain data, 
or from more complex models.

0 within 
categories 
(identical)

1 between 
categories 

(max difference)

500 × 500 
matrix



Category model results
RSA

• When does image category explain the  
MEG data?

• We similarly produce a (dynamic) RDM 
from the participants’ MEG data.

• Correlate the category model RDM with 
the MEG-data RDM (Kendall’s tau-a).

Category 
modelHuman 

MEG data

Fit after foveal 
presentation, 

peaking at 
~400ms.

Little fit before 
presentation 

(good!)

Foveal image 
presentation



An Artificial Neural Network 
(ANN) model of object recognition



The basics
Artificial Neural Networks

• Artificial Neural Networks (ANNs) are a 
simple model of neurons in the brain. 

• Virtual neurons are wired together in a 
hierarchically layered network.  

• ANNs can be trained to classify the 
images they receive as input. 

• Collections of neurons become 
activated when presented with specific 
signals.

https://www.youtube.com/watch?v=Tsvxx-GGlTg&t=1s&ab_channel=MarijnvanVliet



Activation maps
Artificial Neural Networks

• The network represents the image differently at each 
layer. 

• The lower layers of the network tend to model granular 
details of the image such as edges  

• The higher layers tend to model more abstract features 
such categories. 

• We can build a dataset of neuron activation patterns at 
each layer of the network for each image. 

• We want to understand how a network organises the 
representation space and whether it is similar to the 
brain. 

• The animation shows the network activating according 
to the tiger as a stimulus

What a 
human 

sees

What an 
ANN sees



Supervised vs self-supervised learning

• Supervised learning

• The model is trained to complete a task 
requiring a human-labelled dataset.

• For example, learning to classify images 
from a set of labelled images.

• Self-Supervised Learning

• The model is pre-trained on an auxiliary 
task using an unlabelled dataset. The 
model may learn representations which 
are useful for downstream tasks. 

AlexNet

RotAlexNet

SimCLR



 Two parallel lines of enquiry

• Question 1 

• How well do the ANN activations explain the brain data? 

• Does the evolving representations in the ANN model match those in the 
brain?

• Question 2 

• How can we implement the neuronal dynamics that we's observe in the 
brain into an ANN?



Unpicking the dynamics of the 
priming effect (Q1)



AlexNet models

• Model RDMs computed using cosine 
distance between layer-activation 
vectors.

Successive layers 
show increasing 

“categoricity”



AlexNet models

• Model RDMs computed using cosine 
distance between layer-activation 
vectors.

• We’ll perform the same analysis as with 
the category model.

Correlate 
with brain 

RDM

Correlate 
with brain 

RDM



AlexNet results

• All layers fit the model well, but not all 
at the same time.

• Condition permutation test 
(p < 0.05; corrected for temporal 
multiple comparisons).

• Identify early (0–300ms) and late 
(300–600ms) periods for next analysis.

early late

Little fit before foveal 
presentation (good!)

~150ms: 
lower (perceptual) 

layers peak

~300–600ms: 
higher (semantic) 
layers take over



Are the higher peaks really better?

Between models

• We compared the individual models’ 
fits in the early/late periods using an 
area-under-the-curve (AUC) analysis. 

• Tests confirm observations 
(p < 0.05; select differences shown).

Earlier layers do fit 
better in early period

Later layers do fit better 
in later period 

(unprimed only)

early late



AlexNet A20 vs category

• A20 is the output activation prior to 
softmax.

• It captures pre-decision “confusion” 
when attempting to apply a category 
label.

• This is a better explanation for the MEG 
RDMs than the correct decision.

true 
category

pre-softmax 
activation

Better than category 
when semantic 

representations are at 
their peak



Evidence of sharpening

• Repetition suppression can manifest as 
lower/slower representations.

• Sharpening can manifest as 
representations arising faster when 
primed.

• Operationalise this as the timing of the 
“leading edge” of the curve (time-to-
half-max).

• Significant differences shown (subject-
bootstrap 95% CIs).

1-back: perceptual 
representations 

slower (suppression)



Evidence of sharpening

• Repetition suppression can manifest as 
lower/slower representations.

• Sharpening can manifest as 
representations arising faster when 
primed.

• Operationalise this as the timing of the 
“leading edge” of the curve (time-to-
half-max).

• Significant differences shown (subject-
bootstrap 95% CIs).

1-back: categorical 
representations 

faster (sharpening)

1-back: perceptual 
representations 

slower (suppression)



MEG results
Summary

• We used a fine-tuned AlexNet to model the timeline of categorical semantic processing in a priming experiment.

• The ANN was a better model of categorical representation in the brain than just the pure class label.

• Shortly after the foveal probe presentation (0–300ms), perceptual layers were a good match, better than the 
semantic layers, and were slowed by a recent (1-back) prime.

• Evidence of  repetition suppression for lower-level representations.

• In a later period (300–600ms), semantic layers were good, (sometimes) better than perceptual layers, and were 
accelerated by a recent (1-back) prime.

• Evidence of representational sharpening for higher-level representations.

• Future work: whole-scalp sensor-space → spatiotemporal source-space searchlight.



Future directions: neuronal 
dynamics in ANNs (Q2)



Suppression and sharpening
Priming effects in neuronal dynamics

• Recall: we’ve talked about two forms of priming effect: 

• Suppression: Neurons become ‘bored’ of repeated similar stimuli and produce a 
weakened activation. They reactivate when they are ‘surprised’. 

• Sharpening: If the stimulus has been processed previously, it is easier to process it upon 
re-exposure. The activation is weaker but the signal is more salient.



Modelling suppression

• A memory state builds up to match the 
input signal 

• The memory state is subtracted from 
the activation 

• Long exposure to a stimulus will cause 
the activation to decrease over time

Vinken, K., Boix, X., & Kreiman, G. (2020). 
Science Advances, 6(42), eabd4205. 

No Suppression With Suppression



Modelling sharpening

• How can the neurons process the input 
more quickly? 

• Currently, ANNs process images one at 
a time. They do not accumulate 
evidence over time and they have no 
memory state. 

• The brain is building some kind of short 
term memory state. How can we 
incorporate a memory state into ANNs?



Thanks


